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The thermomagnetic instability, driven by gradients of the plasma density and temperature, 
which are parallel to each other and orthogonal to the magnetic field, is studied. The focus of 
this paper is on a magnetized plasma, in which the electron cyclotron frequency is larger than 
the electron collision frequency. The nature of the transverse heat conductivity in the 
magnetized plasma causes the instability to be driven by opposite density and temperature 
gradients. The growth rate in the magnetized plasma is much smaller than in the 
unmagnetized plasma. In a very strong magnetic field heat convection is larger than heat 
conduction, and the instability is further stabilized by the Hall field. 

I. INTRODUCTION 

The generation of strong magnetic fields in laser-pro- 
duced plasmas is a subject of major concern. Theoretical 
studies have explored various generationlM9 and trans- 
portlO.ll mechanisms and experiments have been carried out 
to measure those fields.12-‘5 The magnetic fields could influ- 
ence significantly the spreading of thermal energy as well as 
the hydrodynamics of the plasma. One of the mechanisms 
for the spontaneous generation of magnetic fields is the ther- 
momagnetic instability driven by parallel equilibrium den- 
sity and temperature gradients.‘.’ A perturbed normal tem- 
perature gradient generates a magnetic field through the 
term VnxVT, where n and Tare the electron density and 
temperature. The magnetic field perturbation enhances the 
temperature perturbation through the magnetic field de- 
pendence of the thermal conductivity. The analyses of this 
instability assumed that the equilibrium plasma was unmag- 
netized.‘*2 However, hot plasmas ( T = 10 keV), even of den- 
sity 102” cm - 3, become magnetized ( CIr > 1, where CI is the 
electron cyclotron frequency and r is the electron collision 
time) already for a magnetic field of 300 G. 

In this paper we examine the nature of the thermomag- 
netic instability in a magnetized plasma. We study the linear 
stability of a plasma of parallel density and temperature gra- 
dients immersed in a uniform magnetic field orthogonal to 
the gradients. In a magnetized plasma (Rr% 1) the form of 
the transverse thermal conductivity is different from its form 
in the unmagnetized plasma. The conditions for instability 
as well as the growth rate are shown to be different. The 
instability in the unmagnetized case occurs when the density 
and the temperature gradients are in the same direction. We 
show that in the magnetized case the two gradients have to 
be in opposite directions. In strongly magnetized plasmas 
(fir) 1 andalso&8rnT/B2g 1, whereBis theintensityof 
the magnetic field), the nature of the instability is different 
again. The perturbed magnetic field enhances the tempera- 
ture perturbation not through heat conduction, which is 
negligible, but through convection. The Hall field in Ohm’s 

law stabilizes the instability that exists only for large ratios of 
the temperature and density gradients. A related major role 
of the Hall field in fast convection of magnetic and thermal 
energies in low-density plasmas has been recently ex- 
plored.‘6*‘7 

The reduction of the growth rate of the instability when 
&- > 1 may imply that this thermomagnetic instability is not 
the source of the megagauss fields observed in laser-pro- 
duced plasmas. The existence of the instability in moderately 
low fl plasmas suggests that the instability may arise in toka- 
maks where large temperature gradients exist. 

In Sec. II we present the model, derive the governing 
linearized equations, and study the roots of the dispersion 
relation for various values of the characteristic parameters. 
The results are discussed in Sec. III. 

II. THE MODEL 

We assume that the process is so fast that the ions are 
immobile. The time scale is between the electron and the ion 
cyclotron periods and the spatial scale is between the elec- 
tron and the ion skin depths. With the further assumption of 
quasineutrality, the electron density is fixed in time. The 
equations that govern the evolution of the electron thermal 
energy and of the magnetic field are the electron heat-bal- 
ance equation 

+nTVv+V*q+Ir$.=Q, 

and Faraday’s law 
(1) 

_laB,,xE. (2) 
c dt 

The other governing equations are the generalized Ohm’s 
law 

E- R “XB V(nT) v-y 
en c en en 

(3) 
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Ampere’s law 
(4dc)j = VXB, 

and the relation 
(4) 

j= - em. (5) 
In these equations n, v, T, and rr are the electron density, 
flow velocity, temperature, and stress tensor, q and Q are the 
heat flux density and the generated heat, E and B are the 
electric and magnetic fields, R is the collisional force, j is the 
current, - e is the electron charge, and c is the velocity of 
light in vacuum. 

We are interested in the evolution of the thermomagne- 
tic instability in a magnetized plasma in which &$l. We 
therefore neglect all the dissipative terms in the equations. 
Effects such as the Nemst effect, which are of a dissipative 
origin, do not appear in our model. We assume, however, 
that the plasma is collisional enough so that we can neglect 
the stress tensor. We later derive a condition to justify the 
neglect of the stress tensor. The heat flux density is approxi- 
mated as 

q= -K,,&VT, (6) 
where h=B/]B [ and K, = K,, (B/n,T) is the transverse 
thermal conductivity. With the neglect of R, Q, and rr the 
governing equations combine to 
3 aT+ c 

2” at 
-VXB* 
477-e 

-3T +xVn 
n 

- R xVTVK,, -K, VTVx& = 0 (7) 
and 

+~VnXVT=O. 
en 

(8) 

We now study the stability of an equilibrium in which 
VnXVT = 0, and the magnetic field has a constant direction 
normal to the gradients. We look at perturbations that prop- 
agate in a direction perpendicular in both the equilibrium 
gradients and the magnetic field. We linearize the quantities 
as 

n = n(x), 

T= T,(x) + Tl(x) exp[i(ky - wt) I, 
B = &{B, + B,(x) exp[i(ky - cot)]). (9) 

The problem is similar to the problem studied by Tidman 
and Shanny.’ However, since they looked at the low fir lim- 
it, they kept the dissipative terms that we neglect. We, on the 
other hand, retain the convective terms, such as the Hall 
field in Faraday’s law, that they neglected since they treated 
the weak magnetic field limit. Both in Tidman and Shanny 
and in our paper the thermal conductivity [the third term in 
Eq. (7) ] and the electron pressure gradient [the last term in 
Eq. (8) ] play major roles. In order to compare the instabil- 
ity in the large and small C&r regimes, we keep the general 
form of K, for arbitrary 07. Even though our analysis is 
strictly consistent only in the large f1r regime, we recover the 
essential features of the instability for small fir, as given by 
Tidman and Shanny, through the correct form of K, . In this 

way we follow the changing character of the instability with 
the changing &. 

Since K ,, = K ,, (B /n, T) , we express the term associat- 
ed with the heat conductivity as 

h XVF[V3 - (B/n)Vn] (u/n), 

where a=c?K, /d(B/n) (B = B,,n = no). The linearized 
equations (7) and ( 8) become 

-+T, f- kc B, -3% Tn ano 
4n-e 2 ax +,ax 

dT k --o&j 
ilxn ’ 

-,I# .!&dn,=O 
‘n2ax ’ 

- w3 I +z$$$+ T,)=O. 

(10) 

(11) 

The inclusion of dissipative terms would turn the algebraic 
equations for T, and B, into differential equations and also 
introduce dispersion that would stabilize the short wave- 
length perturbations. 

Expressing the gradients as aTd& = TJ& and 
dnd& = ndl, , we obtain the dispersion relation for 
f = w/kc, 

J-2-f 1, ( -$~+l&)+~[$+$) 

-I- 
2 a 

ri 1 2a Bg 
-Kc 

-----=(J 
3 C 4s-elzn3 

(12) 

Here q = l,/i,. The condition for instability is 

(I31 

We omitted, for convenience, the subscript zeros. The gen- 
eral expression for the transverse thermal conductivity K, 
is’* 

K A _ nTr fi+“;‘(fl7-,’ + j’;] 
m A ’ 

(14) 

where m is the electron mass, A= (fir)4 + 6, ( &r)2 + S,, 
and the coefficients are given by Braginskii.‘8 When fir is 
small, K, sznTri27y~/rnSo, and 

p (W2Y;;C > o awt - 
’ 87~ S,e 

The condition for instability is 

n>($++-)[I +yg($r] -l, (15) 

where or is the plasma conductivity. The expression in the 
square brackets can also be written as 

1 + 2 ?G up 
( > 

2 
---, 
36, c 

(16) 

where wP is the plasma frequency, /2, E v,r is the mean-free 
path, and v, is the electron thermal velocity. When the sec- 
ond term is very large, inequality ( 15) reduces to the Tid- 
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man-Shanny instability criterion 77 > 0. The growth rate in 
the case that Rr4 1 and &w,/cg 1 is 

Im w = 4rkd & ($ LJ2. (17) 

A similar expression has been derived by Tidman and 
Shanny.’ 

We note that in recent theoretical studies a different 
form for the transverse thermal conductivity has been de- 
rived.” these recent studies have different predictions about 
the instability in the low-collisionality case. 

In a magnetized plasma (s1r) 1) the transverse thermal 
conductivity is K, +(cnT/eB), and a = - $(cn’T/ 
eB ‘) . The dispersion relation becomes 

The condition for instability becomes 

B’(y + 1571) -8(3 + 1871) + 9<0. (19) 

The instability exists for - &<~((2 - m)/3, or 
rl> (2 + ml/3 and 8, <P<P2, where 

p 
12 

= 6+36qf 12*31’2(3~2-4~-2)“2 
(25+6Ov) 

, (20) 

and also for r,r < - 5/12 for 0 >f12. 
Had we retained the stress tensor, we then would have 

had to add to the left-hand side of Eq. ( 11) the term 

vok ‘c2 d 1 ---- [ 01 127-re dx no 
2, 

the leading viscous term in the magnetized case. Here 
Q’0.73q)T,T. I8 This term can be neglected relative to the 
second term in Eq. ( 11) if the inequality 

(wpA :/cl”) ( 1/znz,)“2aT, (21) 
is satisfied. Usually the plasma is collisional enough so that 
Eq. (2 1) is satisfied and the stress tensor may be neglected. 

Rather than studying the general dispersion relation 
( 18) let us compare the stability of the plasma for large and 
small values of p. Let us first consider /3,1. Because of the 
sign change of a the instability exists for negative v,r] < - 5/ 
12. The growth rate becomes 

Imo= kc( -$2)“‘. (22) 

The modification of the instability by the magnetic field is 
demonstrated by comparing the expressions ( 17) and (22). 
While for a weak magnetic field the growth rate is given by 
Eq. ( 17). When the magnetic field is substantial, 77 has to be 
negative and the growth rate is given by (22). The ratio of 
the growth rates in the high /? limit is 

Imw(&)l) =J_ PS, l/2 c 
Imw(flT<l) 4 r;; x’ (3 

(23) 

Therefore the plasma magnetization reduces the growth rate The main conclusions of this paper are the following: 
by c/w,R,, which is a very small number in laser-produced First, the growth rate of the thermomagnetic instability de- 

plasmas. We conclude from (23) that the thermomagnetic 
instability is not likely to generate the megagauss fields ob- 
served in laser-produced plasma because of this reduction of 
the growth rate for fir > 1. 

We now turn to the low/I limit. The effect of the thermal 
conductivity is not important in the strongly magnetized 
plasma. The instability exists nevertheless even in the case 
where a = 0. It is driven by the electron pressure gradient 
and heat convection rather than by heat conduction. Condi- 
tion ( 19) results in the following condition for instability: 

r] > 1/w. (24) 
The Hall field due to the large magnetic field stabilizes the 
plasma in this regime. The growth rate becomes 

Im w = kc(A &/1nlT)1’2 = kv,(c2/o~Inl,)“2. (25) 

As could be expected, when the thermal energy of the plasma 
is smaller than the magnetic field energy, a large tempera- 
ture gradient is required for the instability to exist and the 
growth rate is smaller. In the low 0 limit the growth rate is 
smaller by p 1’2 than in the magnetized (s1+ 1) high p re- 
gime. The growth rate is also smaller than ku, and therefore 
Landau damping is small. Expression (25) shows that the 
instability could be nevertheless substantial in low p plas- 
mas. Consider a tokamak plasma of B = 0.1. For ?,r > 5 the 
growth rate of the instability could be substantial. The insta- 
bility we describe is the electromagnetic analog of certain 
electrostatic instabilities in low fi plasmas. 20~21 

We estimate the maximal growth rate using the assump- 
tion that the short wavelength perturbations are stabilized 
by the resistivity. To order of magnitude 

(Imw),,~c2(k~,,/4na). (26) 
The maximal growth rates are therefore estimated to be 

Im w(fl<<l) =4r/2 &a/1,1,, Wa) 

128 $224, Y;; 
Imo(P$l,fi7<1) = 3-p~~ (27b) 

tlT 0 

(27~) 

The growth rate is largest in the unmagnetized plasma. 

Ill. DISCUSSION 

We have studied the thermomagnetic instability in a 
magnetized plasma. We have shown that both the criterion 
for instability and the growth rate of the instability are differ- 
ent in unmagnetized (fir< 1) and in magnetized (07% 1) 
plasmas. The difference results from the different transverse 
thermal conductivities in the two regimes. When the plasma 
is strongly magnetized (p< 1) the thermal conductivity is 
negligible and the instability is stabilized by the Hall field. 

In our model we have made several simplifying assump- 
tions. The magnetic field was taken to be uniform. The anal- 
ysis was local in order to derive a simple algebraic dispersion 
relation. It is important to know how the relaxation of these 
assumptions affects the result, and also what the nonlinear 
evolution of the instability is. 
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creases significantly when the plasma becomes magnetized. 
Second, even though the growth rate is smaller, the instabil- 
ity could still be present in low /3 plasmas, such as tokamaks. 
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