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The thermomagnetic instability, driven by gradients of the plasma density and temperature,
which are parallel to each other and orthogonal to the magnetic field, is studied. The focus of
this paper is on a magnetized plasma, in which the electron cyclotron frequency is larger than
the electron collision frequency. The nature of the transverse heat conductivity in the
magnetized plasma causes the instability to be driven by opposite density and temperature
gradients. The growth rate in the magnetized plasma is much smaller than in the
unmagnetized plasma. In a very strong magnetic field heat convection is larger than heat
conduction, and the instability is further stabilized by the Hall field.

I. INTRODUCTION

The generation of strong magnetic fields in laser-pro-
duced plasmas is a subject of major concern. Theoretical
studies have explored various generation' and trans-
port'®'!" mechanisms and experiments have been carried out
to measure those fields.'>!> The magnetic fields could influ-
ence significantly the spreading of thermal energy as well as
the hydrodynamics of the plasma. One of the mechanisms
for the spontaneous generation of magnetic fields is the ther-
momagnetic instability driven by parallel equilibrium den-
sity and temperature gradients."> A perturbed normal tem-
perature gradient generates a magnetic field through the
term Va X VT, where n and T are the electron density and
temperature. The magnetic field perturbation enhances the
temperature perturbation through the magnetic field de-
pendence of the thermal conductivity. The analyses of this
instability assumed that the equilibrium plasma was unmag-
netized."? However, hot plasmas (T = 10keV), even of den-
sity 102° cm ~ ?, become magnetized (Qr> 1, where ) is the
electron cyclotron frequency and 7 is the electron collision
time) already for a magnetic field of 300 G.

In this paper we examine the nature of the thermomag-
netic instability in a magnetized plasma. We study the linear
stability of a plasma of parallel density and temperature gra-
dients immersed in a uniform magnetic field orthogonal to
the gradients. In a magnetized plasma (7> 1) the form of
the transverse thermal conductivity is different from its form
in the unmagnetized plasma. The conditions for instability
as well as the growth rate are shown to be different. The
instability in the unmagnetized case occurs when the density
and the temperature gradients are in the same direction. We
show that in the magnetized case the two gradients have to
be in opposite directions. In strongly magnetized plasmas
(Qr> landalsof=87nT /B2 <1, where Bis theintensity of
the magnetic field), the nature of the instability is different
again. The perturbed magnetic field enhances the tempera-
ture perturbation not through heat conduction, which is
negligible, but through convection. The Hall field in Ohm’s
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law stabilizes the instability that exists only for large ratios of
the temperature and density gradients. A related major role
of the Hall field in fast convection of magnetic and thermal
energies in low-density plasmas has been recently ex-
plored.'®"’

The reduction of the growth rate of the instability when
Q7> 1 may imply that this thermomagnetic instability is not
the source of the megagauss fields observed in laser-pro-
duced plasmas. The existence of the instability in moderately
low B plasmas suggests that the instability may arise in toka-
maks where large temperature gradients exist.

In Sec. II we present the model, derive the governing
linearized equations, and study the roots of the dispersion
relation for various values of the characteristic parameters.
The results are discussed in Sec. III.

Il. THE MODEL

We assume that the process is so fast that the ions are
immobile. The time scale is between the electron and the ion
cyclotron periods and the spatial scale is between the elec-
tron and the ion skin depths. With the further assumption of
quasineutrality, the electron density is fixed in time. The
equations that govern the evolution of the electron thermal
energy and of the magnetic field are the electron heat-bal-
ance equation

3 onT 3 ) av
——— 4 V{=—nT TVw+4 V- — =0,
2at+(2nv+n vVt o
(1
and Faraday’s law
_-l_a_B=vxE, 2)
¢ dt

The other governing equations are the generalized Ohm’s
law
R vXB V&I) Veam

E=—_ , (3)
éen C en en
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Ampeére’s law

(4m/c)j = VXB, (4)
and the relation

j= —env. (5)

In these equations 7, v, T, and = are the electron density,
flow velocity, temperature, and stress tensor, g and @ are the
heat flux density and the generated heat, E and B are the
electric and magnetic fields, R is the collisional force, j is the
current, — e is the electron charge, and c is the velocity of
light in vacuum.

We are interested in the evolution of the thermomagne-
tic instability in a magnetized plasma in which 7> 1. We
therefore neglect all the dissipative terms in the equations.
Effects such as the Nernst effect, which are of a dissipative
origin, do not appear in our model. We assume, however,
that the plasma is collisional enough so that we can neglect
the stress tensor. We later derive a condition to justify the
neglect of the stress tensor. The heat flux density is approxi-
mated as

a= — K, h XVT, (6)

where h=B/|B | and K, = K, (B/n,T) is the transverse
thermal conductivity. With the neglect of R, Q, and  the
governing equations combine to

3,97 ( 3 T )

2 nll L £ yxB( —2vr v

2" T ame ¢ PR
—hXVIVK, —K, vr-vxiz =0 (7

and

dB, ¢ vx((VXB)xB)+£Vn><VT=o. (8)

ot 47re 7 en

We now study the stability of an equilibrium in which
Vi X VT = 0, and the magnetic field has a constant direction
normal to the gradients. We look at perturbations that prop-
agate in a direction perpendicular in both the equilibrium
gradients and the magnetic field. We linearize the quantities
as

n=n(x),
T=To(x) + T (x) explilky — wt)],
B =2&,{B, + B,(x) explitky — wt)]}. %

The problem is similar tc the problem studied by Tidman
and Shanny.' However, since they looked at the low 7 lim-
it, they kept the dissipative terms that we neglect. We, on the
other hand, retain the convective terms, such as the Hall
field in Faraday’s law, that they neglected since they ireated
the weak magnetic field limit. Both in Tidman and Shanny
and in our paper the thermal conductivity [the third term in
Eq. (7)] and the electron pressure gradient [ the last term in
Eq. (8)] play major roles. In order to compare the instabil-
ity in the large and small Q7 regimes, we keep the general
form of K, for arbitrary {}7. Even though our analysis is
strictly consistent only in the large Q)7 regime, we recover the
essential features of the instability for small {7, as given by
Tidman and Shanny, through the correct form of X , . In this
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way we follow the changing character of the instability with
the changing Q7.

Since X, = X, (B/n, T}, weexpress the term associat-
ed with the heat conductivity as

h XVT[VB — (B/n)Vn](a/n),

where a=0dK , /8(B/n)(B = By,n = ny). The linearized
equations (7) and (8) become

— iﬂle + ke 51( _3 9%, ﬁé@)
2 47re 2 Ox ng ox
9T kg ke, Badne_q (10)
ox n n?
wB, + X ‘9”0(‘9031 Tl)=0. (1)
eny dx \ 4mn,

The inclusion of dissipative terms would turn the algebraic
equations for T, and B, into differential equations and also
introduce dispersion that would stabilize the short wave-
length perturbations.

Expressing the gradients as 37,/9x = Ty/I; and
ny/3x = ny/l,, we obiain the dispersion relation for
S=wlke,

pod(-

y }_Boa+ By

2
3 n% 41ren) enl? [ 41Te\ )

(12)

Here =1, /!;. The condition for instability is
B? T 4 B’d*
(4dmen) 7re 7 3 9 n*?
B?> a 84Ty <0.
3men® ¢ 3en’e
We omitted, for convenience, the subscript zeros. The gen-
eral expression for the transverse thermal conductivity K ,
is!®

(13)

nTr Qr{yi Q) + v5 ]
m A ’

where 7 is the electron mass, A= (Q7)* + §,(Q7)% + &,
and the coefficients are given by Braginskii.'®* When Qr is

small, X , =nTrQryl/mb, and
a= 5 —(QT) ¥ >0.
81r N

The condition for instability is

Gl TR

where o is the plasma conductivity. The expression in the
square brackets can also be written as

2 Vg(ﬂewp)z
e ey
+ 3 5\ ¢

where w, is the plasma frequency, A, =v, 7 is the mean-free
path, and v, is the electron thermal velocity. When the sec-
ond term is very large, inequality (15) reduces to the Tid-

(15)

(16)
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man-Shanny instability criterion 7 > 0. The growth rate in
the case that 7€l and A, w,/c> 1 is

’” 172
Im o = 4kod % (i Yo ) .
3 11,8,

A similar expression has been derived by Tidman and
Shanny.’

We note that in recent theoretical studies a different
form for the transverse thermal conductivity has been de-
rived.!® these recent studies have different predictions about
the instability in the low-collisionality case.

In a magnetized plasma (07> 1) the transverse thermal
conductivity is K, =3(cnT/eB), and a= —3(cn’T/
eB?). The dispersion relation becomes

B e I

(18)

(17)

The condition for instability becomes

B*(% + 157) —B(3 + 187) 4+ 9 <0. (19)

The instability exists for — $<7<(2—+10)/3, or
7> (2 +10)/3 and B,<B<B,, where

_ 643674 12:323y — 47— 2)"7?
(25 + 6077)

and also for < — 5/12 for B > f3,.
Had we retained the stress tensor, we then would have
had to add to the left-hand side of Eq. (11) the term

_M[_‘?_(Lﬂz
127e | dx \ny/l’

the leading viscous term in the magnetized case. Here
70=0.73n,T,7.'® This term can be neglected relative to the
second term in Eq. (11) if the inequality

(wpA3/el,) (1/1,17) ' <Qr, 2n

is satisfied. Usually the plasma is collisional enough so that
Eq. (21) is satisfied and the stress tensor may be neglected.

Rather than studying the general dispersion relation
(18) let us compare the stability of the plasma for large and
small values of 8. Let us first consider 8> 1. Because of the
sign change of a the instability exists for negative 7,7 < — 5/
12. The growth rate becomes

/12 172
Ima)=kc(—i D,B) .
6 11,

The modification of the instability by the magnetic field is
demonstrated by comparing the expressions (17) and (22).
While for a weak magnetic field the growth rate is given by
Eq. (17). When the magnetic field is substantial, 77 has to be
negative and the growth rate is given by (22). The ratio of
the growth rates in the high £ limit is

Im w (7> 1) =i(ﬁ60 )1’2 ¢
Imew(Qr<1) 4\ v a)p/le '

Therefore the plasma magnetization reduces the growth rate
by ¢/w,A., which is a very small number in laser-produced

BI,Z s (20)

(22)

(23)
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plasmas. We conclude from (23) that the thermomagnetic
instability is not likely to generate the megagauss fields ob-
served in laser-produced plasma because of this reduction of
the growth rate for Q7> 1.

Wenow turn to thelow 8 limit. The effect of the thermal
conductivity is not important in the strongly magnetized
plasma. The instability exists nevertheless even in the case
where a = 0. It is driven by the electron pressure gradient
and heat convection rather than by heat conduction. Condi-
tion (19) results in the following condition for instability:

n>1/28. (24)

The Hall field due to the large magnetic field stabilizes the
plasma in this regime. The growth rate becomes

Im o = kc(A%/1,10)"* = kv, (*/0}l, 1) (25)

As could be expected, when the thermal energy of the plasma
is smaller than the magnetic field energy, a large tempera-
ture gradient is required for the instability to exist and the
growth rate is smaller. In the low 8 limit the growth rate is
smaller by 8'/? than in the magnetized (73 1) high Sre-
gime. The growth rate is also smaller than kv, and therefore
Landau damping is small. Expression (25) shows that the
instability could be nevertheless substantial in low S plas-
mas. Consider a tokamak plasma of 8= 0.1. For > 5 the
growth rate of the instability could be substantial. The insta-
bility we describe is the electromagnetic analog of certain
electrostatic instabilities in low 3 plasmas.***'

We estimate the maximal growth rate using the assump-
tion that the short wavelength perturbations are stabilized

by the resistivity. To order of magnitude
max =C°(k 2, /470). (26)

The maximal growth rates are therefore estimated to be

(Im w)

Imw(B<1)=47iio/l,l,, (27a)
128 P2 AL Vo
I 19Q 1 =T —_ 27b
mo(B>1,07<1) 3 @ LI, b (27b)
12
Imw(B>1,er>l)=i4ﬁ D'BU‘ (27¢)
6 [2,17|

The growth rate is largest in the unmagnetized plasma.

lll. DISCUSSION

We have studied the thermomagnetic instability in a
magnetized plasma. We have shown that both the criterion
for instability and the growth rate of the instability are differ-
ent in unmagnetized ({7« 1) and in magnetized (7> 1)
plasmas. The difference results from the different transverse
thermal conductivities in the two regimes. When the plasma
is strongly magnetized (8« 1) the thermal conductivity is
negligible and the instability is stabilized by the Hall field.

In our model we have made several simplifying assump-
tions. The magnetic field was taken to be uniform. The anal-
ysis was local in order to derive a simple algebraic dispersion
relation. It is important to know how the relaxation of these
assumptions affects the result, and also what the nonlinear
evolution of the instability is.

The main conclusions of this paper are the following:
First, the growth rate of the thermomagnetic instability de-
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creases significantly when the plasma becomes magnetized.
Second, even though the growth rate is smaller, the instabil-
ity could still be present in low £ plasmas, such as tokamaks.
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